Auflistung nach Autor:in "Blankson, Harriet Naa Afia"
Gerade angezeigt 1 - 1 von 1
- Treffer pro Seite
- Sortieroptionen
Item Multidrug resistance, population structure, and epidemiology of Mycobacterium tuberculosis complex strains from West Africa(2025-02-25) Blankson, Harriet Naa AfiaTuberculosis (TB) remains a global public health challenge, impacting millions of individuals and placing a substantial burden on healthcare systems worldwide. The causative agents of TB, Mycobacterium tuberculosis complex (MTBC) strains, engage in a complex interplay of factors that influence its transmission, evolution, and the emergence of drug-resistant strains. Despite commendable progress in TB control efforts, the persistent threat of multidrug-resistant TB(MDR-TB), characterized by resistance to both isoniazid (INH) and rifampicin (RIF), has significantly complicated treatment protocols. Recent recommendations by the World Health Organization (WHO) advocate for a new all-oral 6-month regimen to address MDR-TB. However, concerns arise with the development of resistance to fluoroquinolones (FQs) and bedaquiline (BDQ), potentially jeopardizing the regimen's efficacy. Documented outbreaks of MTBC strains, particularly of MDR strains, underscore the urgency of monitoring the transmission of MTBC strains, as it can impact diagnostics and treatment strategies in affected regions. Specific strains within MTBC lineages may exhibit unique traits, such as varying minimum inhibitory concentrations (MIC) or inherent resistance to specific drugs. Understanding the circulating MTBC strains in a country, their drug resistance profiles, and their evolutionary dynamics is imperative for effective TB management. To close these knowledge gaps, this thesis seeks to explore the multifaceted landscape of TB through epidemiological, molecular, and clinical perspectives. The research aims to unravel the genomic intricacies of MTBC strains, by investigating the transmission dynamics of rifampicin-resistant (RR)/MDR-TB in Sierra Leone and exploring the transmission dynamics and drug resistance patterns of the sublineage 4.6.2.2 Cameroon. By shedding light on these aspects, this thesis seeks to contribute to enhanced diagnostics and more effective treatment strategies and ultimately support the global mission to eradicate TB. In the study on RR/MDR-TB in Sierra Leone, whole genome sequencing (WGS) revealed high levels of drug resistance, with one in four strains being resistant to all first-line anti-TB drugs. While no FQ resistance was detected, five strains exhibited resistance to BDQ/clofazimine (CFZ) due to mutations in the Rv0678 gene. The study also revealed a greater diversity of drug resistance mutations, including borderline INH and RIF resistance mutations, which can potentially influence treatment options. The high cluster rate of over 40% indicated ongoing transmission of RR/MDR-TB strains, contributing to the burden of RR/MDR-TB in the country. Analysis of the 238 MTBC strains revealed a high diversity of strains in Sierra Leone. The presence of six major lineages (L) of MTBC strains (L1= 4%, L2 = 9%, L3= 0.8%, L4= 62%, L5= 2.9% and L6= 21%) were identified in Sierra Leone. Mycobacterium tuberculosis (Mtb) strains constitute 56%, while Mycobacterium africanum (Maf) L6 strains, account for 21% of MDR MTBC strains, which suggest a longitudinal outbreak with specific branches exhibiting resistance to multiple drugs, including BDQ/CFZ. Despite the high diversity, strains of certain sublineages 4.1.2.1. Haarlem, 4.8 mainly T and 2.2.1 Beijing Ancestral 3 and 6.3.3 West Africa 2 were implicated in the ongoing MDR transmissions. The global population structure and phylogeography of strains of the Cameroon sublineage were also investigated using WGS. The strains were classified into eight distinct clades, with strains originating from 24 countries across Africa, Asia, Australia, and Europe. A fourth of the strains were identified as transmission strains. The strains of two clades, C.5 and C.8, exhibited high clustering rates, indicating higher transmission potential. Drug resistance was also observed, with over 10% of the strains classified as MDR. The strains remained susceptible to BDQ/CFZ, except for two strains displaying resistance. Overall, these findings contribute to a comprehensive understanding of the transmission dynamics and drug resistance patterns of MTBC strains in Sierra Leone and the sublineage 4.6.2.2 Cameroon. The clades of strains that were defined, clusters, and global distribution emphasize the role of migration in the spread of these strains locally and beyond Africa. The insights gained from this research can inform and improve TB surveillance and control measures, both within Sierra Leone, West Africa, and in other parts of the world where the Cameroon sublineage strains have been identified.