Lightweight, transparent, and uncertainty-aware deep learning for diabetic retinopathy grading
dc.affiliation.institute | Institut für Medizinische Elektrotechnik | |
dc.contributor.author | Siebert, Marlin Sebastian | |
dc.contributor.referee | Rostalski, Philipp | |
dc.contributor.referee | Grzegorzek, Marcin | |
dc.date.accepted | 2025 | |
dc.date.accessioned | 2025-04-03T09:48:54Z | |
dc.date.available | 2025-04-03T09:48:54Z | |
dc.date.issued | 2025 | |
dc.identifier.uri | https://epub.uni-luebeck.de/handle/zhb_hl/3411 | |
dc.identifier.urn | urn:nbn:de:gbv:841-202504031 | |
dc.language.iso | en | |
dc.subject | Deep Learning | |
dc.subject | Transparenz | |
dc.subject | Konzept basiertes Lernen | |
dc.subject | Unsicherheit | |
dc.subject | Bildsegmentierung | |
dc.subject | Diabetische Retinopathie | |
dc.subject.ddc | 004 | |
dc.title | Lightweight, transparent, and uncertainty-aware deep learning for diabetic retinopathy grading | |
dc.type | thesis.doctoral |
Dateien
Originalbündel
1 - 1 von 1
Lade...
- Name:
- Dissertation-v1.1.3-final-bw-no-cv.pdf
- Größe:
- 20.57 MB
- Format:
- Adobe Portable Document Format
Lizenzbündel
1 - 1 von 1
Vorschaubild nicht verfügbar
- Name:
- license.txt
- Größe:
- 5.07 KB
- Format:
- Item-specific license agreed to upon submission
- Beschreibung: